资源类型

期刊论文 1046

会议视频 41

会议信息 4

年份

2023 130

2022 164

2021 116

2020 76

2019 57

2018 59

2017 45

2016 32

2015 44

2014 32

2013 41

2012 35

2011 43

2010 29

2009 39

2008 32

2007 44

2006 6

2005 6

2004 8

展开 ︾

关键词

3D打印 13

院士大会 9

增材制造 7

经济 5

碳中和 4

节能减排 4

催化剂 3

医学 3

空间可展开结构 3

能源 3

营养健康 3

2020 2

3D生物打印 2

4D打印 2

FY-3卫星 2

农业科学 2

创新设计 2

反应模型 2

工程管理 2

展开 ︾

检索范围:

排序: 展示方式:

Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis

《能源前沿(英文)》 doi: 10.1007/s11708-023-0908-2

摘要: The Haber-Bosch process is the most widely used synthetic ammonia technology at present. Since its invention, it has provided an important guarantee for global food security. However, the traditional Haber-Bosch ammonia synthesis process consumes a lot of energy and causes serious environmental pollution. Under the serious pressure of energy and environment, a green, clean, and sustainable ammonia synthesis route is urgently needed. Electrochemical synthesis of ammonia is a green and mild new method for preparing ammonia, which can directly convert nitrogen or nitrate into ammonia using electricity driven by solar, wind, or water energy, without greenhouse gas and toxic gas emissions. Herein, the basic mechanism of the nitrogen reduction reaction (NRR) to ammonia and nitrate reduction reaction (NO3 RR) to ammonia were discussed. The representative approaches and major technologies, such as lithium mediated electrolysis and solid oxide electrolysis cell (SOEC) electrolysis for NRR, high activity catalyst and advanced electrochemical device fabrication for NO3 RR and electrochemical ammonia synthesis were summarized. Based on the above discussion and analysis, the main challenges and development directions for electrochemical ammonia synthesis were further proposed.

关键词: electrochemical ammonia synthesis     nitrogen     nitrate     nitrogen reduction reaction (NRR) to ammonia     nitrate reduction reaction (NO–3 RR)    

Studies on catalytic reduction of nitrate in groundwater

GENG Bing, ZHU Yanfang, JIN Zhaohui, LI Tielong, KANG Haiyan, WANG Shuaima

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 357-361 doi: 10.1007/s11783-007-0061-x

摘要: Catalytic reduction of nitrate in groundwater by sodium formate over the catalyst was investigated. Pd-Cu/-AlO catalyst was prepared by impregnation and characterized by brunauer-emmett-teller (BET), inductive coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). It was found that total nitrogen was effectively removed from the nitrate solution (100 mg/L) and the removal efficiency was 87%. The catalytic activity was affected by pH, catalyst amount used, concentration of sodium formate, and initial concentration of nitrate. As sodium formate was used as reductant, precise control in the initial pH was needed. Excessively high or low initial pH (7.0 or 3.0) reduced catalytic activity. At initial pH of 4.5, catalytic activity was enhanced by reducing the amount of catalyst, while concentrations of sodium formate increased with a considerable decrease in N selectivity. In which case, catalytic reduction followed the first order kinetics.

关键词: dispersive     electron microscopy     considerable decrease     Catalytic reduction     brunauer-emmett-teller    

Effect of exhaust gas recirculation and ethyl hexyl nitrate additive on biodiesel fuelled diesel enginefor the reduction of NO

K. VENKATESWARLU, B. S. R MURTHY, V. V. SUBBARAO, K. Vijaya KUMAR

《能源前沿(英文)》 2012年 第6卷 第3期   页码 304-310 doi: 10.1007/s11708-012-0195-9

摘要: Cetane improvers reduce the ignition delay, which in turn reduces the combustion temperatures thereby reduce NO emissions. Exhaust gas recirculation (EGR) proved to be an effective way to reduce the NO emissions. In this present experimental work, a combination of exhaust gas recirculation and cetane improver ethyl hexyl nitrate (EHN) is used to investigate the performance and exhaust emissions of a single cylinder four stroke naturally aspirated direct injection and air cooled diesel engine. Test results show that the brake thermal efficiency increases with the increase in the percentage of EGR which is accompanied by a reduction in brake specific fuel consumption and exhaust gas temperatures, and that bio-diesel with cetane improver under 20% EGR reduces NO emissions by 33% when compared to baseline fuel without EGR. However carbon monoxide (CO), hydro carbon (HC) and smoke emissions increase with an increase in percentage of EGR.

关键词: additive     exhaust gas recirculation (EGR)     emissions     ethyl hexyl nitrate (EHN)     performance    

Synthesis of nanoiron by microemulsion with Span/Tween as mixed surfactants for reduction of nitrate

ZHANG Yunxia, LI Tielong, JIN Zhaohui, WANG Wei, WANG Shuaima

《环境科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 466-470 doi: 10.1007/s11783-007-0074-5

摘要: Denitrification of nitrate in groundwater using iron nanoparticles has received increasing interest in recent years. In order to fabricate iron nanoparticles with homogeneously spherical shape and narrow size distribution, a simp

关键词: spherical     distribution     groundwater     interest     Denitrification    

Physical and chemical processes of wintertime secondary nitrate aerosol formation

Qi YING

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 348-361 doi: 10.1007/s11783-011-0343-1

摘要: The UCD/CIT model was modified to include a process analysis (PA) scheme for gas and particulate matter (PM) to study the formation of secondary nitrate aerosol during a stagnant wintertime air pollution episode during the California Regional PM /PM Air Quality Study (CRPAQS) where detailed measurements of PM components are available at a few sites. Secondary nitrate is formed in the urban areas from near the ground to a few hundred meters above the surface during the day with a maximum modeled net increase rate of 4 μg·m ·d during the study episode. The secondary nitrate formation rate in rural areas is lower due to lower NO . In the afternoon hours, near-surface temperature can be high enough to evaporate the particulate nitrate. In the nighttime hours, both the gas phase N O reactions with water vapor and the N O heterogeneous reactions with particle-bound water are important for secondary nitrate formation. The N O reactions are most import near the surface to a few hundred meters above surface with a maximum modeled net secondary nitrate increase rate of 1 μg·m ·d and are more significant in the rural areas where the O concentrations are high at night. In general, vertical transport during the day moves the nitrate formed near the surface to higher elevations. During the stagnant days, process analysis indicates that the nitrate concentration in the upper air builds up and leads to a net downward flux of nitrate through vertical diffusion and a rapid increase of surface nitrate concentration.

关键词: secondary nitrate aerosol     N2O5 heterogeneous reaction     process analysis    

Large-scale synthesis of isolated Mn2O3 nanotube/fiber with ferric nitrate as catalyst

ZHANG Aifei, LIU Jiping, L? Guangshu

《化学科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 55-58 doi: 10.1007/s11705-007-0011-y

摘要: Isolated MnO nanotubes and nanofibers were prepared very easily at a large scale with the liquid-phase catalysis method. The MnO nanotubes had dimensions of 30 50 nm (exterior diameter) and 0.2 1.0 ?m (length), approximately. The O nanofibers had dimensions of 10 30 nm (diameter) and 0.4 2.0 ?m (length), approximately. Nano-O with different microstructures including nanotubes, nanofibers and nanoparticles could be selectively synthesized by controlling the contents and proportions of potassium permanganate and ferric nitrate. Ferric nitrate was an ideal catalyst for the preparation of O nanotube/fiber. When cobalt nitrate or nickel nitrate was used as catalyst, only amorphous nano-O was synthesized. X-ray diffraction (XRD) result shows that the O nanotube has a crystalline structure different from o-O, t-O, h-O and ?-O.

关键词: different     nickel     exterior diameter     nanotube     XRD    

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reductionand oxygen evolution reaction: a density functional theory study

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 570-580 doi: 10.1007/s11705-022-2247-y

摘要: Recently, metal–organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe2Mn–Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe2Co–Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO2(110) catalysts. The analysis of the potential gap of Fe2M clusters indicates that Fe2Mn, Fe2Co, and Fe2Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe2Mn and Fe2Co connected through 3,3′,5,5′-azobenzenetetracarboxylate linker to form Fe2M–PCN–Fe2M is explored. Compared with Fe2Mn–PCN–Fe2Mn, Fe2Co–PCN–Fe2Co, and isolated Fe2M clusters, the mixed-metal Fe2Co–PCN–Fe2Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe2Co–PCN–Fe2Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts.

关键词: bimetallic metal–organic frameworks     bifunctional electrocatalyst     density functional theory     oxygen reduction reaction     oxygen evolution reaction    

Catalytic reduction for water treatment

Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0972-0

摘要: Treating water contaminants via heterogeneously catalyzed reduction reaction is a subject of growing interest due to its good activity and superior selectivity compared to conventional technology, yielding products that are non-toxic or substantially less toxic. This article reviews the application of catalytic reduction as a progressive approach to treat different types of contaminants in water, which covers hydrodehalogenation for wastewater treatment and hydrogenation of nitrate/nitrite for groundwater remediation. For hydrodehalogenation, an overview of the existing treatment technologies is provided with an assessment of the advantages of catalytic reduction over the conventional methodologies. Catalyst design for feasible catalytic reactions is considered with a critical analysis of the pertinent literature. For hydrogenation, hydrogenation of nitrate/nitrite contaminants in water is mainly focused. Several important nitrate reduction catalysts are discussed relating to their preparation method and catalytic performance. In addition, novel approach of catalytic reduction using in situ synthesized H evolved from water splitting reaction is illustrated. Finally, the challenges and perspective for the extensive application of catalytic reduction technology in water treatment are discussed. This review provides key information to our community to apply catalytic reduction approach for water treatment.

关键词: Halogenated compounds     Nitrate/nitrite contaminants     Hydrodechloriantion     Hydrogenation     Wastewater treatment     Groundwater remediation    

RR1 and RR2 gene deletion affects the immunogenicity of a live attenuated pseudorabies

Shijun YAN,He YAN,Chaolin ZHANG,Tongyan WANG,Qingyuan YANG,Zhe SUN,Yan XIAO,Feifei TAN,Xiangdong LI,Kegong TIAN

《农业科学与工程前沿(英文)》 2016年 第3卷 第1期   页码 81-86 doi: 10.15302/J-FASE-2016088

摘要: As virulence-determining genes, and encode the small subunit and large subunit of viral ribonucleotide reductase (RR) in pseudorabies virus which have been extensively studied in mice. However, their role in pigs has not been adequately investigated. In this study, we deleted and genes based on a / / triple gene-deleted pseudorabies virus and tested its efficacy in pigs as a vaccine candidate. The rescued virus showed similar growth properties and plaque size as its parent strain. In an animal study, the virus could elicit humoral immune responses shown by generation of gB-specific antibodies and virus neutralizing antibodies. However, vaccination could not provide protection against virulent pseudorabies virus challenge since vaccinated pigs showed clinical pseudorabies-specific syndromes. The deficiency in protection may due to the generation of late and low levels of gB antibodies and virus neutralizing antibodies.

关键词: pseudorabies virus     RR1 and RR2     ribonucleotide reductase     vaccine candidate    

Overlooked nitrogen-cycling microorganisms in biological wastewater treatment

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1426-2

摘要:

• AOA and comammox bacteria can be more abundant and active than AOB/NOB at WWTPs.

关键词: Ammonia oxidizing archaea (AOA)     Complete ammonia oxidizing (comammox) bacteria     Dissimilatory nitrate reduction to ammonium (DNRA) bacteria     Nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms     Engineering application    

Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1674-4

摘要:

● Simultaneous NH4+/NO3 removal was achieved in the FeS denitrification system

关键词: Anammox     Denitrification     FeS     NH4+/NO3     Sulfammox    

Isolation of microbe for asymmetric reduction of prochiral aromatic ketone and its reaction characters

YANG Zhonghua, WANG Yu, WANG Guanghui, ZENG Rong, YAO Shanjing

《化学科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 416-420 doi: 10.1007/s11705-007-0076-7

摘要: The favorable microbes for the asymmetric reduction of prochiral aromatic ketones was isolated from soil using acetophenone as the sole carbon source, when the asymmetric reduction of acetophenone (ACP) to chiral ?-phenethyl alcohol (PEA) was chosen as the model reaction. Two microbe strains with excellent catalytic activity were obtained. They were and identified by bacteria identification. The product of the asymmetric reduction of ACP catalyzed by was mainly R-PEA and that by was mainly S-PEA. The yield and enantiomeric excesses (e.e.) could respectively reach 75% and 90% for , and 80% and 70% for , much higher than those catalyzed by baker s yeast.

关键词: excellent catalytic     prochiral aromatic     enantiomeric     -phenethyl     catalytic activity    

Thermal annealing synthesis of double-shell truncated octahedral Pt-Ni alloys for oxygen reduction reaction

Xiashuang LUO, Yangge GUO, Hongru ZHOU, Huan REN, Shuiyun SHEN, Guanghua WEI, Junliang ZHANG

《能源前沿(英文)》 2020年 第14卷 第4期   页码 767-777 doi: 10.1007/s11708-020-0667-2

摘要: Shape-controlled Pt-Ni alloys usually offer an exceptional electrocatalytic activity toward the oxygen reduction reaction (ORR) of polymer electrolyte membrane fuel cells (PEMFCs), whose tricks lie in well-designed structures and surface morphologies. In this paper, a novel synthesis of truncated octahedral PtNi alloy catalysts that consist of homogeneous Pt-Ni alloy cores enclosed by NiO-Pt double shells through thermally annealing defective heterogeneous PtNi alloys is reported. By tracking the evolution of both compositions and morphologies, the outward segregation of both PtO and NiO are first observed in Pt-Ni alloys. It is speculated that the diffusion of low-coordination atoms results in the formation of an energetically favorable truncated octahedron while the outward segregation of oxides leads to the formation of NiO-Pt double shells. It is very attractive that after gently removing the NiO outer shell, the dealloyed truncated octahedral core-shell structure demonstrates a greatly enhanced ORR activity. The as-obtained truncated octahedral Pt Ni core-shell alloy presents a 3.4-folds mass-specific activity of that for unannealed sample, and its activity preserves 45.4% after 30000 potential cycles of accelerated degradation test (ADT). The peak power density of the dealloyed truncated octahedral Pt Ni core-shell alloy catalyst based membrane electrolyte assembly (MEA) reaches 679.8 mW/cm , increased by 138.4 mW/cm relative to that based on commercial Pt/C.

关键词: dealloyed Pt-Ni alloys     truncated octahedron     double-shell     thermal annealing     oxygen reduction reaction (ORR)    

Effects of support acidity on the reaction mechanisms of selective catalytic reduction of NO by CH

Shicheng XU, Junhua LI, Dong YANG, Jiming HAO

《环境科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 186-193 doi: 10.1007/s11783-009-0016-5

摘要: The reaction mechanisms of selective catalytic reduction (SCR) of nitric oxide (NO) by methane (CH ) over solid superacid-based catalysts were proposed and testified by DRIFTS studies on transient reaction as well as by kinetic models. Catalysts derived from different supports would lead to different reaction pathways, and the acidity of solid superacid played an important role in determining the reaction mechanisms and the catalytic activities. Higher ratios of Br?nsted acid sites to Lewis acid sites would lead to stronger oxidation of methane and then could facilitate the step of methane activation. Strong Br?nsted acid sites would not necessarily lead to better catalytic performance, however, since the active surface NO species and the corresponding reaction routes were determined by the overall acidity strength of the support. The reaction routes where NO moiety was engaged as an important intermediate involved moderate oxidation of methane, the rate of which could determine the overall activity. The reaction involving NO moiety was likely to be determined by the step of reduction of NO. Therefore, to enhance the SCR activity of solid superacid catalysts, reactions between appropriate couples of active NO species and activated hydrocarbon intermediates should be realized by modification of the support acidity.

关键词: selective catalytic reduction (SCR)     nitric oxide (NO)     methane     support acidity     Br?nsted acid sites     NOy species    

Electrocatalytic reduction of NO to NH in ionic liquids by P-doped TiO nanotubes

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 726-734 doi: 10.1007/s11705-022-2274-8

摘要: Designing advanced and cost-effective electrocatalytic system for nitric oxide (NO) reduction reaction (NORR) is vital for sustainable NH3 production and NO removal, yet it is a challenging task. Herein, it is shown that phosphorus (P)-doped titania (TiO2) nanotubes can be adopted as highly efficient catalyst for NORR. The catalyst demonstrates impressive performance in ionic liquid (IL)-based electrolyte with a remarkable high Faradaic efficiency of 89% and NH3 yield rate of 425 μg·h−1·mgcat.−1, being close to the best-reported results. Noteworthy, the obtained performance metrics are significantly larger than those for N2 reduction reaction. It also shows good durability with negligible activity decay even after 10 cycles. Theoretical simulations reveal that the introduction of P dopants tunes the electronic structure of Ti active sites, thereby enhancing the NO adsorption and facilitating the desorption of *NH3. Moreover, the utilization of IL further suppresses the competitive hydrogen evolution reaction. This study highlights the advantage of the catalyst−electrolyte engineering strategy for producing NH3 at a high efficiency and rate.

关键词: nitric oxide reduction reaction     electrcatalysis     ammonia production     phosphorus-doped titania    

标题 作者 时间 类型 操作

Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis

期刊论文

Studies on catalytic reduction of nitrate in groundwater

GENG Bing, ZHU Yanfang, JIN Zhaohui, LI Tielong, KANG Haiyan, WANG Shuaima

期刊论文

Effect of exhaust gas recirculation and ethyl hexyl nitrate additive on biodiesel fuelled diesel enginefor the reduction of NO

K. VENKATESWARLU, B. S. R MURTHY, V. V. SUBBARAO, K. Vijaya KUMAR

期刊论文

Synthesis of nanoiron by microemulsion with Span/Tween as mixed surfactants for reduction of nitrate

ZHANG Yunxia, LI Tielong, JIN Zhaohui, WANG Wei, WANG Shuaima

期刊论文

Physical and chemical processes of wintertime secondary nitrate aerosol formation

Qi YING

期刊论文

Large-scale synthesis of isolated Mn2O3 nanotube/fiber with ferric nitrate as catalyst

ZHANG Aifei, LIU Jiping, L? Guangshu

期刊论文

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reductionand oxygen evolution reaction: a density functional theory study

期刊论文

Catalytic reduction for water treatment

Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang

期刊论文

RR1 and RR2 gene deletion affects the immunogenicity of a live attenuated pseudorabies

Shijun YAN,He YAN,Chaolin ZHANG,Tongyan WANG,Qingyuan YANG,Zhe SUN,Yan XIAO,Feifei TAN,Xiangdong LI,Kegong TIAN

期刊论文

Overlooked nitrogen-cycling microorganisms in biological wastewater treatment

期刊论文

Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification

期刊论文

Isolation of microbe for asymmetric reduction of prochiral aromatic ketone and its reaction characters

YANG Zhonghua, WANG Yu, WANG Guanghui, ZENG Rong, YAO Shanjing

期刊论文

Thermal annealing synthesis of double-shell truncated octahedral Pt-Ni alloys for oxygen reduction reaction

Xiashuang LUO, Yangge GUO, Hongru ZHOU, Huan REN, Shuiyun SHEN, Guanghua WEI, Junliang ZHANG

期刊论文

Effects of support acidity on the reaction mechanisms of selective catalytic reduction of NO by CH

Shicheng XU, Junhua LI, Dong YANG, Jiming HAO

期刊论文

Electrocatalytic reduction of NO to NH in ionic liquids by P-doped TiO nanotubes

期刊论文